🏗️ Arxis Core Architecture

Understand the modular and scalable architecture that makes Arxis Core one of the most comprehensive ecosystems in Rust.

Overview

Arxis Core is an ecosystem of over 120 Rust packages organized into a modular architecture with three main layers:

đź”· Application Layer

High-level services and applications

  • arxis-analytics-server
  • avx-docs-site
  • landing-page

đź”¶ Domain Layer

Specialized workspaces

  • avx-ai-workspace (AI/ML)
  • avx-geo-workspace (GIS)
  • avx-core-workspace

🔸 Infrastructure Layer

Fundamental primitives and utilities

  • avx-std, avx-error, avx-sync
  • avx-alloc, avx-buffer, avx-time
  • avx-primitives, avx-id

Design Principles

1. Modularity

Each package has a single, well-defined responsibility. Dependencies are explicit and minimized.

# Example of minimal dependencies
[dependencies]
avx-error = { path = "../avx-error" }
avx-std = { path = "../avx-std", optional = true }

2. Zero-Cost Abstractions

Arxis Core abstractions impose no runtime costs. Code is optimized at compile time.

// Generic abstraction with no overhead
pub trait Processor {
    fn process(&self, data: T) -> Result;
}

// Monomorphized at compile-time
impl Processor for MyProcessor {
    #[inline]
    fn process(&self, data: u32) -> Result {
        Ok(data * 2)
    }
}

3. Safety-First

Memory safety guaranteed by Rust's type system. Minimal use of unsafe, always documented.

4. Async-Native

Native support for asynchronous operations using Tokio as the primary runtime.

5. Platform-Agnostic

Support for multiple platforms: Linux, Windows, macOS, WebAssembly.

Architecture Layers

Infrastructure Layer

Provides fundamental building blocks:

  • avx-std: Extensões da biblioteca padrĂŁo
  • avx-error: Sistema de erros unificado
  • avx-alloc: Alocadores de memĂłria customizados
  • avx-sync: Primitivos de sincronização
  • avx-time: Manipulação de tempo e duração
  • avx-id: Geração de identificadores Ăşnicos

Domain Layer

Specialized workspaces for different domains:

  • AI/ML: Tensors, neural networks, distributed training
  • GIS: Geometry, projections, spatial analysis
  • Network: Protocols, servers, clients
  • Database: Storage, indexing, queries

Application Layer

Complete services built on top of lower layers:

  • Analytics Server: Real-time data processing
  • Documentation Site: Documentation system
  • Examples: Demonstration applications

Core Workspace

The main workspace contains the fundamental packages:

[workspace]
members = [
    "avx-std",
    "avx-error",
    "avx-sync",
    "avx-alloc",
    "avx-buffer",
    "avx-time",
    "avx-id",
    "avx-primitives",
    "avx-meta",
    "avx-nucleus",
]

resolver = "2"

[workspace.dependencies]
tokio = { version = "1.35", features = ["full"] }
serde = { version = "1.0", features = ["derive"] }
thiserror = "1.0"

Features

  • Shared dependencies at workspace level
  • Optimized incremental compilation
  • Synchronized versioning
  • Integrated tests

AI Workspace

Specialized workspace for artificial intelligence and machine learning:

Structure

avx-ai-workspace/
├── avxdb-core/          # Banco de dados vetorial
├── avx-quinn/           # QUIC protocol
├── avx-tensor/          # Operações com tensores
├── avx-neural/          # Redes neurais
├── avx-training/        # Treinamento distribuído
└── avx-inference/       # Inferência otimizada

Key Features

  • GPU support via CUDA and ROCm
  • Vectorized operations (SIMD)
  • Distributed training
  • Optimized graph computation
  • Quantization and pruning

Geo Workspace

Complete system for geospatial data:

Components

  • avx-geometry: Primitivos geomĂ©tricos
  • avx-projection: Sistemas de coordenadas
  • avx-spatial: ĂŤndices espaciais (R-tree, Quadtree)
  • avx-gis: Análise GIS de alto nĂ­vel
  • avx-raster: Processamento de imagens raster

Data Flow

// GIS processing pipeline
use avx_gis::{Point, Polygon, SpatialIndex};

let index = SpatialIndex::new();
let polygon = Polygon::from_wkt("POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))")?;
index.insert(polygon);

let query_point = Point::new(0.5, 0.5);
let results = index.query_within_radius(&query_point, 10.0);

Dependency Management

Dependency Hierarchy

Dependencies follow a strict hierarchy to avoid cycles:

Application Layer
    ↓
Domain Layer (Workspaces)
    ↓
Infrastructure Layer (Primitives)
    ↓
External Dependencies (tokio, serde, etc.)

Shared Dependencies

Common dependencies are defined at the root workspace:

[workspace.dependencies]
# Async runtime
tokio = { version = "1.35", features = ["full"] }

# Serialization
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"

# Error handling
thiserror = "1.0"
anyhow = "1.0"

# Crypto
ring = "0.17"
ed25519-dalek = "2.0"

# Network
hyper = "1.0"
quinn = "0.10"

Feature Flags

Fine-grained control over functionalities:

[features]
default = ["std"]
std = ["avx-std"]
alloc = ["avx-alloc"]
async = ["tokio"]
gpu = ["cuda", "rocm"]
cuda = ["cudarc"]
rocm = ["hip"]
simd = []

Performance

Optimization Strategies

1. Zero-Copy Operations

// Use slices to avoid copies
pub fn process_data(data: &[u8]) -> &[u8] {
    &data[10..20]  // Zero-copy slice
}

// Reusable buffer
let mut buffer = Vec::with_capacity(1024);
loop {
    buffer.clear();
    read_data(&mut buffer)?;
    process(&buffer)?;
}

2. SIMD Vectorization

use std::simd::{f32x8, SimdFloat};

fn vector_add_simd(a: &[f32], b: &[f32], c: &mut [f32]) {
    for i in (0..a.len()).step_by(8) {
        let va = f32x8::from_slice(&a[i..]);
        let vb = f32x8::from_slice(&b[i..]);
        let vc = va + vb;
        vc.copy_to_slice(&mut c[i..]);
    }
}

3. Memory Pool

use avx_alloc::Pool;

let pool = Pool::new(1024);
let buf1 = pool.allocate(256);
let buf2 = pool.allocate(512);
// Buffers automatically reused

4. Async Batching

use tokio::time::{interval, Duration};

let mut batch = Vec::new();
let mut ticker = interval(Duration::from_millis(100));

loop {
    tokio::select! {
        item = receiver.recv() => {
            batch.push(item);
            if batch.len() >= 100 {
                process_batch(&batch).await;
                batch.clear();
            }
        }
        _ = ticker.tick() => {
            if !batch.is_empty() {
                process_batch(&batch).await;
                batch.clear();
            }
        }
    }
}

Benchmarks

All packages include benchmarks with Criterion:

use criterion::{black_box, criterion_group, criterion_main, Criterion};

fn benchmark_hash(c: &mut Criterion) {
    c.bench_function("sha256", |b| {
        let data = vec![0u8; 1024];
        b.iter(|| {
            avx_hash::sha256(black_box(&data))
        });
    });
}

criterion_group!(benches, benchmark_hash);
criterion_main!(benches);

Security

Security Practices

1. Memory Safety

  • Minimal use of unsafe
  • All unsafe is documented and audited
  • Extensive testing with Miri

2. Constant-Time Operations

// Constant-time comparison to prevent timing attacks
use subtle::ConstantTimeEq;

pub fn verify_mac(expected: &[u8], actual: &[u8]) -> bool {
    expected.ct_eq(actual).into()
}

3. Secure Defaults

// Secure defaults
impl Default for CryptoConfig {
    fn default() -> Self {
        Self {
            algorithm: Algorithm::Aes256Gcm,  // Strong by default
            key_size: 256,
            iterations: 100_000,  // PBKDF2
        }
    }
}

4. Dependency Auditing

# deny.toml - Cargo deny configuration
[advisories]
db-path = "~/.cargo/advisory-db"
db-urls = ["https://github.com/rustsec/advisory-db"]
vulnerability = "deny"
unmaintained = "warn"
yanked = "deny"

Security Audits

Critical packages undergo regular audits:

  • Third-party code auditing
  • Continuous fuzzing
  • Static analysis with Clippy and cargo-audit
  • Penetration testing