🏗️ Arxis Core Architecture
Understand the modular and scalable architecture that makes Arxis Core one of the most comprehensive ecosystems in Rust.
Overview
Arxis Core is an ecosystem of over 120 Rust packages organized into a modular architecture with three main layers:
đź”· Application Layer
High-level services and applications
- arxis-analytics-server
- avx-docs-site
- landing-page
đź”¶ Domain Layer
Specialized workspaces
- avx-ai-workspace (AI/ML)
- avx-geo-workspace (GIS)
- avx-core-workspace
🔸 Infrastructure Layer
Fundamental primitives and utilities
- avx-std, avx-error, avx-sync
- avx-alloc, avx-buffer, avx-time
- avx-primitives, avx-id
Design Principles
1. Modularity
Each package has a single, well-defined responsibility. Dependencies are explicit and minimized.
# Example of minimal dependencies
[dependencies]
avx-error = { path = "../avx-error" }
avx-std = { path = "../avx-std", optional = true }
2. Zero-Cost Abstractions
Arxis Core abstractions impose no runtime costs. Code is optimized at compile time.
// Generic abstraction with no overhead
pub trait Processor {
fn process(&self, data: T) -> Result;
}
// Monomorphized at compile-time
impl Processor for MyProcessor {
#[inline]
fn process(&self, data: u32) -> Result {
Ok(data * 2)
}
}
3. Safety-First
Memory safety guaranteed by Rust's type system. Minimal use of unsafe, always documented.
4. Async-Native
Native support for asynchronous operations using Tokio as the primary runtime.
5. Platform-Agnostic
Support for multiple platforms: Linux, Windows, macOS, WebAssembly.
Architecture Layers
Infrastructure Layer
Provides fundamental building blocks:
- avx-std: Extensões da biblioteca padrão
- avx-error: Sistema de erros unificado
- avx-alloc: Alocadores de memĂłria customizados
- avx-sync: Primitivos de sincronização
- avx-time: Manipulação de tempo e duração
- avx-id: Geração de identificadores únicos
Domain Layer
Specialized workspaces for different domains:
- AI/ML: Tensors, neural networks, distributed training
- GIS: Geometry, projections, spatial analysis
- Network: Protocols, servers, clients
- Database: Storage, indexing, queries
Application Layer
Complete services built on top of lower layers:
- Analytics Server: Real-time data processing
- Documentation Site: Documentation system
- Examples: Demonstration applications
Core Workspace
The main workspace contains the fundamental packages:
[workspace]
members = [
"avx-std",
"avx-error",
"avx-sync",
"avx-alloc",
"avx-buffer",
"avx-time",
"avx-id",
"avx-primitives",
"avx-meta",
"avx-nucleus",
]
resolver = "2"
[workspace.dependencies]
tokio = { version = "1.35", features = ["full"] }
serde = { version = "1.0", features = ["derive"] }
thiserror = "1.0"
Features
- Shared dependencies at workspace level
- Optimized incremental compilation
- Synchronized versioning
- Integrated tests
AI Workspace
Specialized workspace for artificial intelligence and machine learning:
Structure
avx-ai-workspace/
├── avxdb-core/ # Banco de dados vetorial
├── avx-quinn/ # QUIC protocol
├── avx-tensor/ # Operações com tensores
├── avx-neural/ # Redes neurais
├── avx-training/ # Treinamento distribuĂdo
└── avx-inference/ # Inferência otimizada
Key Features
- GPU support via CUDA and ROCm
- Vectorized operations (SIMD)
- Distributed training
- Optimized graph computation
- Quantization and pruning
Geo Workspace
Complete system for geospatial data:
Components
- avx-geometry: Primitivos geométricos
- avx-projection: Sistemas de coordenadas
- avx-spatial: ĂŤndices espaciais (R-tree, Quadtree)
- avx-gis: Análise GIS de alto nĂvel
- avx-raster: Processamento de imagens raster
Data Flow
// GIS processing pipeline
use avx_gis::{Point, Polygon, SpatialIndex};
let index = SpatialIndex::new();
let polygon = Polygon::from_wkt("POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))")?;
index.insert(polygon);
let query_point = Point::new(0.5, 0.5);
let results = index.query_within_radius(&query_point, 10.0);
Dependency Management
Dependency Hierarchy
Dependencies follow a strict hierarchy to avoid cycles:
Application Layer
↓
Domain Layer (Workspaces)
↓
Infrastructure Layer (Primitives)
↓
External Dependencies (tokio, serde, etc.)
Shared Dependencies
Common dependencies are defined at the root workspace:
[workspace.dependencies]
# Async runtime
tokio = { version = "1.35", features = ["full"] }
# Serialization
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
# Error handling
thiserror = "1.0"
anyhow = "1.0"
# Crypto
ring = "0.17"
ed25519-dalek = "2.0"
# Network
hyper = "1.0"
quinn = "0.10"
Feature Flags
Fine-grained control over functionalities:
[features]
default = ["std"]
std = ["avx-std"]
alloc = ["avx-alloc"]
async = ["tokio"]
gpu = ["cuda", "rocm"]
cuda = ["cudarc"]
rocm = ["hip"]
simd = []
Performance
Optimization Strategies
1. Zero-Copy Operations
// Use slices to avoid copies
pub fn process_data(data: &[u8]) -> &[u8] {
&data[10..20] // Zero-copy slice
}
// Reusable buffer
let mut buffer = Vec::with_capacity(1024);
loop {
buffer.clear();
read_data(&mut buffer)?;
process(&buffer)?;
}
2. SIMD Vectorization
use std::simd::{f32x8, SimdFloat};
fn vector_add_simd(a: &[f32], b: &[f32], c: &mut [f32]) {
for i in (0..a.len()).step_by(8) {
let va = f32x8::from_slice(&a[i..]);
let vb = f32x8::from_slice(&b[i..]);
let vc = va + vb;
vc.copy_to_slice(&mut c[i..]);
}
}
3. Memory Pool
use avx_alloc::Pool;
let pool = Pool::new(1024);
let buf1 = pool.allocate(256);
let buf2 = pool.allocate(512);
// Buffers automatically reused
4. Async Batching
use tokio::time::{interval, Duration};
let mut batch = Vec::new();
let mut ticker = interval(Duration::from_millis(100));
loop {
tokio::select! {
item = receiver.recv() => {
batch.push(item);
if batch.len() >= 100 {
process_batch(&batch).await;
batch.clear();
}
}
_ = ticker.tick() => {
if !batch.is_empty() {
process_batch(&batch).await;
batch.clear();
}
}
}
}
Benchmarks
All packages include benchmarks with Criterion:
use criterion::{black_box, criterion_group, criterion_main, Criterion};
fn benchmark_hash(c: &mut Criterion) {
c.bench_function("sha256", |b| {
let data = vec![0u8; 1024];
b.iter(|| {
avx_hash::sha256(black_box(&data))
});
});
}
criterion_group!(benches, benchmark_hash);
criterion_main!(benches);
Security
Security Practices
1. Memory Safety
- Minimal use of
unsafe - All
unsafeis documented and audited - Extensive testing with Miri
2. Constant-Time Operations
// Constant-time comparison to prevent timing attacks
use subtle::ConstantTimeEq;
pub fn verify_mac(expected: &[u8], actual: &[u8]) -> bool {
expected.ct_eq(actual).into()
}
3. Secure Defaults
// Secure defaults
impl Default for CryptoConfig {
fn default() -> Self {
Self {
algorithm: Algorithm::Aes256Gcm, // Strong by default
key_size: 256,
iterations: 100_000, // PBKDF2
}
}
}
4. Dependency Auditing
# deny.toml - Cargo deny configuration
[advisories]
db-path = "~/.cargo/advisory-db"
db-urls = ["https://github.com/rustsec/advisory-db"]
vulnerability = "deny"
unmaintained = "warn"
yanked = "deny"
Security Audits
Critical packages undergo regular audits:
- Third-party code auditing
- Continuous fuzzing
- Static analysis with Clippy and cargo-audit
- Penetration testing